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Abstract

Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical

feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosys-

tems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical

variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil

temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense

sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was

more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where

the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosys-

tems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen),

whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites

with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table posi-

tions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil

layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil

moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally

had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statis-

tically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these

results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to

changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter

following permafrost thaw.
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Introduction

Methane (CH4) is again accumulating in the atmo-

sphere at rates similar to those observed before 1990 for

reasons that are not clear (Dlugokencky et al., 2011). It

is therefore a serious issue to quantitatively understand

the source dynamics of CH4 because of its ability to

absorb long-wave radiation in the atmopshere and act

as an effective climate forcing agent (Forster et al.,

2007). Northern high-latitude biomes have abundant

wetland areas (Matthews & Fung, 1987) that are large

sources of biogenic CH4. Emission estimates for the

combined boreal and tundra biomes (>50°N) are

between 25 and 100 Tg yr�1, with most estimates in the

lower half of this range (Cao et al., 1998; Walter et al.,

2001; Mikaloff-Fletcher et al., 2004; Zhuang et al., 2006;

McGuire et al., 2009; Bousquet et al., 2011; Koven et al.,

2011). Of this total, the tundra accounts for 8–30 Tg yr�1

(Christensen, 1993; McGuire et al., 2012). The boreal

and tundra biomes together are thus responsible for

~3–10% of total CH4 emissions (~550 Tg yr�1), and a

significant fraction of global natural wetland emissions

(~100–200 Tg yr�1) to the atmosphere (Neef et al., 2010;

Dlugokencky et al., 2011). With ongoing rapid climate

change at high latitudes, including permafrost thaw,

there is a need to understand the environmental and

physical controls of CH4 emissions to assess the poten-

tial for high-latitude CH4 emissions to act as biogeo-

chemical feedbacks to the climate system (Arneth et al.,

2010; Dlugokencky et al., 2011; Koven et al., 2011;

Schneider von Deimling et al., 2012).

Net CH4 emissions are determined by the balance

between CH4 production and removal through oxida-

tion. Production of CH4 is an anaerobic microbial pro-

cess where archaeal methanogens convert acetate, H2,

and CO2 derived from organic matter into CH4. Oxida-

tion of CH4 is a largely aerobic process carried out by
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methanotrophic and methylotrophic bacteria. Resi-

dence time of CH4 in aerobic soils and waters affect the

proportion of produced CH4 that is released to the

atmosphere from anaerobic production sites. Complete

or near-complete oxidation affects CH4 that diffuses

slowly through aerobic soils and waters. Conversely,

advective transport through aerenchymatous roots and

stems of certain plant species and the release through

episodic ebullition both mediate emissions to the atmo-

sphere that are much less affected by oxidation (King

et al., 1998; Le Mer & Roger, 2001).

The combination of biological and physical processes

that control net CH4 emissions is responsible for the

characteristic high spatial and temporal variability of

CH4 flux measurements. This has resulted in individual

studies finding that terrestrial tundra and boreal CH4

fluxes are related to a broad range of controls. These

factors include soil moisture conditions (Moore et al.,

1994; von Fischer et al., 2010), soil temperature (Bubier

et al., 1995; Christensen et al., 1995), vegetation compo-

sition – particularly the presence or absence of sedges

(Bellisario et al., 1999; Str€om et al., 2005), soil respira-

tion, and plant productivity as indicated by CO2 fluxes

(€Oquist & Svensson, 2002; Nyk€anen et al., 2003), quality

of soil organic matter (Wagner et al., 2005), availability

of organic acids in pore water (Christensen et al., 2003;

Str€om et al., 2012), structure of the microbial commu-

nity (Wagner et al., 2003; Waldrop et al., 2010), atmo-

spheric CO2 concentration (Hutchin et al., 1995; Saarnio

et al., 2000), and active layer thickness (Christensen

et al., 1995; van Huissteden et al., 2005). While different

environmental and physical variables appear to domi-

nate at different temporal and spatial scales, observed

relationships also differ among studies and not all vari-

ables have been universally found to influence CH4

fluxes.

The first published studies of CH4 measurements

from high-latitude regions were carried out in northern

Sweden in the 1970s (Svensson, 1973), with research

continuing in both Eurasia and North America since

the mid-1980s. Measurements of CH4 fluxes are most

commonly made using static chambers, whereby a

small area of a land surface (~0.05–0.5 m2) is enclosed

and CH4 headspace concentrations are measured

repeatedly over a period of time (~10–120 min). Static

chamber techniques have drawbacks, including high

labor intensity, low sampling frequency (unless an

automated system is deployed), disturbance to soils

during collar installation, alteration of the microenvi-

ronment during flux measurement, and the assumption

that fluxes are properly characterized by the change in

CH4 concentration in the headspace (Davidson et al.,

2002; Lai et al., 2012). On the other hand, chamber mea-

surements can be implemented in remote locations and

allow for a detailed characterization of the spatial varia-

tion of CH4 fluxes and their relationship to environ-

mental variables.

Climate change has been more rapid at high latitudes

than the global average over the last few decades – a

trend which is very likely to continue during this cen-

tury. Central estimates for high-latitude temperature

and precipitation changes during this century lie

between +4 and +6 °C and +10% and +30%, respec-

tively, in IPCC’s ‘A1B’ projections (Christensen et al.,

2007). Widespread deepening of the active layer and

complete near-surface permafrost thaw are projected to

accompany climate changes (Delisle, 2007; Lawrence

et al., 2012). Permafrost thaw can have very different

ecological and hydrological consequences depending

on the topographical location in the landscape, soil

characteristics, and permafrost ice content – examples

of thermokarst landforms include collapse fens and

bogs along with thermokarst pits, gullies, slumps,

drainage basins, and lakes (Jorgenson & Osterkamp,

2005). Loss of permafrost, primarily in peatlands, will

make previously frozen organic matter available to

microbial activity (Camill, 2005), a store of organic mat-

ter that is potentially microbially labile (Schuur et al.,

2008; Waldrop et al., 2010). Studies of CH4 emissions in

thermokarst landforms (primarily collapse bogs and

fens) have found higher emissions than in nearby sites

where permafrost is still intact (Bubier et al., 1995; Lib-

lik et al., 1997; Turetsky et al., 2002; Wickland et al.,

2006; Myers-Smith et al., 2007; Prater et al., 2007;

B€ackstrand et al., 2008; Desyatkin et al., 2009). It is not

clear, however, if elevated CH4 emissions are due to

microbial access to recently thawed organic material or

due to other changes associated with permafrost thaw,

for example altered hydrological setting, thermal

regime, and/or vegetation composition.

Both continuous, low winter fluxes (Alm et al., 1999;

Panikov & Dedysh, 2000; Nyk€anen et al., 2003; Kim

et al., 2007) and occasional, high fluxes during spring

and fall due to thaw and freeze dynamics (Windsor

et al., 1992; Hargreaves et al., 2001; Mastepanov et al.,

2008) can contribute significantly to the annual CH4

flux in high-latitude regions. However, in nearly all

cases the annual flux is dominated (50–95%) by fluxes

during the short (~90–150 days) growing season (e.g.

Whalen & Reeburgh, 1992). Understanding the controls

and sensitivities of growing season emissions is there-

fore crucial for assessing the impacts of climate change

on high-latitude CH4 emissions.

The objective of this study is to synthesize results

from more than three decades of chamber CH4 chamber

measurements from the northern high-latitude regions.

We used published literature to compile a database of

average growing season CH4 fluxes along with a range
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of associated environmental and physical variables.

Our database thus contains more ancillary information

than previous synthesis efforts of high-latitude CH4

emissions (McGuire et al., 2012). The analysis focuses

on terrestrial ecosystems, with a majority of the

research carried out in wetlands with varying perma-

frost conditions. While acknowledging their importance

for landscape scale CH4 emissions, aquatic ecosystems

were excluded from this analysis due to assumed dif-

ferences in controlling variables in comparison to ter-

restrial ecosystems (e.g. Bastviken et al., 2004). Using

the database, we evaluated which variables were

related to CH4 fluxes across studies and whether the

nature and strengths of these functional relationships

led to differences in sensitivities among ecosystems and

permafrost conditions. We hypothesized that site CH4

fluxes would be primarily related to interacting effects

of environmental and ecological variables such as soil

moisture, soil temperature, plant productivity, and veg-

etation composition, and that any effect from perma-

frost conditions could be attributed to its influence on

those primary controls. A synthesis of available studies

can reveal patterns that are difficult for individual

studies to detect and thus provide new knowledge that

will improve our understanding of the sensitivity of

northern high-latitude CH4 emissions to continued

climate change.

Methods

Database compilation

A database with reported growing season (June to September)

CH4 fluxes was compiled using data from studies published

prior to March 2012. All studies were conducted north of 50°N,

within permafrost zones as outlined by Brown et al. (1998),

Fig. 1. All studies used static chambers to measure CH4 fluxes.

The database was compiled to compare CH4 fluxes among

sites and we define a site as a group of static chambers placed

on surfaces with similar vegetation composition and physical

characteristics (e.g. moisture conditions, permafrost condition,

and soil temperature regime) and in proximity to each other

(in most cases~10–100 m apart, although up to a few kilome-

ters was acceptable as done for example by Morrissey & Liv-

ingston (1992)). In most cases, chambers were grouped into

suitable sites in the primary publications, but for a few studies

it was necessary to aggregate or split different chamber loca-

tions into appropriate sites. Sites with open water and no

emergent vegetation, sites with measurements only outside

the growing season, and sites with manipulations of environ-

mental variables (water table, nutrients, soil temperature etc.)

were not included. Studies using eddy covariance techniques
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Fig. 1 Map of permafrost zones with study locations indicated by diamonds. First number in boxes indicates how many studies from

each location are included in our database, and the second number indicates how many sites these studies contributed. Shadings

indicate permafrost zones, using delineations from Brown et al. (1998).
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were also not considered as they measure CH4 fluxes over lar-

ger spatial scales than chambers, over which environmental

and physical variables typically exhibit large heterogeneity.

A total of 303 sites from 65 studies were included in the data-

base, see Supporting Information. The median number of con-

tributed sites per study was four, but eight studies contributed

more than 10 sites each for a combined total of 110 sites. Sites

had a median of five static chambers (first and third quar-

tiles = 3 and 8) and 10 flux measurement occasions (first and

third quartiles = 2 and 15) of each chamber over the measure-

ment period, yielding a median of 30 flux measurements per

site (first and third quartiles = 14 and 70). In total, ~14 000

manual chamber flux measurements and � 5000 automatic

chamber measurements provide the basis for the database.

Analyses showed that the overall results presented in this study

were robust with regard to both the influence of individual

studies that contributed a large number of sites as well as the

influence of sites that were characterized by a low number of

flux measurements, see Supporting Information. Only data col-

lected during the growing season were used in the database, as

this period is responsible for a majority of the annual flux and

because emissions outside the growing season may have other

controls than during the growing season. Most studies had

measurement periods that included July and August, although

data from June and September were also included as long as

this did not include a spring or autumn period with substan-

tially lower (higher) CH4 fluxes (>�50%) than emissions

observed during the remainder of the growing season.

Site averaged daily growing season CH4 flux (FCH4) was

estimated from the average CH4 flux among chambers

included in the site over the considered measurement period.

Multiyear measurements of individual sites were treated as a

single measurement period and are represented by a single

FCH4 estimate. Several other continuous variables were esti-

mated in a way analogous to FCH4, including average position

of the water table (ZWT), average soil temperature measured

between 5 and 25 cm below the surface (TS), average ecosystem

respiration (i.e. dark chamber CO2 fluxes, ER), and average

gross primary production (i.e. modelled daily gross primary

production based on dark and transparent CO2 chamber

measurements, GPP). Data were also collected on the active

layer depth (i.e. the end of season thaw depth, ZAL), the depth

of the organic soil layer (ZORG), soil water pH, and the year of

the study (as a proxy for atmospheric CO2 concentration).

Long-term mean annual temperatures and mean summer

temperatures for all study locations were obtained from a

database compiled by Hijmans et al. (2005).

Categorical variables in the database include site location

within a permafrost zone (continuous, discontinuous, and

sporadic/isolated) (Brown et al., 1998) and surface permafrost

conditions (present or absent in the upper 2 m). Our classifica-

tion of permafrost conditions allowed for a few sites located in

the continuous permafrost zone to be classified as being per-

mafrost-free since they were located adjacent to lakes with

talik formations. Vegetation composition was assessed by

categorizing plant functional types (sedges, trees, woody

shrubs, and Sphagnum mosses) as dominant, present, or absent

within the sites. The sedge category was defined to include

species in the Cyperaceae family, primarily represented by the

genera Carex and Eriophorum. In the assessment of whether a

plant functional type is present or dominant in a site it was

impossible to implement a strict objective criterion since stud-

ies varied greatly in the level of detail provided on vegetation

composition. Dominance was assumed if a species from a

plant functional type was mentioned to be the only or one of

up to three species present in the site (often the case for tall

sedge species such as Eriophorum aquatilis, E. angustifolium,

E. scheuchzeri, and Carex rostrata), or if vegetation composition

found species of a plant functional type to comprise more than

50% of the biomass or have more than 50% areal coverage.

Trees were assigned as present if the canopy cover was

described as open and dominant if closed. Furthermore, we

used ZWT and TS to split sites into three wetness and tempera-

ture categories each (Dry/Wet/Saturated categories with sep-

arations at ZWT �15 and �2.5 cm and Cold/Intermediate/

Warm categories with separations at TS 5 and 10 °C), which

were further used in combination yielding nine wetness/

temperature categories.

Sites were also classified by ecosystem type – including

upland forest, dry tundra, palsa, bog, fen, wet tundra, perma-

frost fen, and littoral ecosystems. Ecosystem classification is

based on the general site description in the primary article

along with site data on vegetation composition, permafrost

conditions, and ZORG. Permafrost is present in dry tundra, palsa,

wet tundra, and permafrost fen, absent in bog and fen and

variable in upland forest and littoral ecosystems. Bog, fen, palsa,

and permafrost fen are peatland ecosystems, where ZORG

>40 cm. Peatland nutrient status is often qualitatively

described in the primary articles, with bog and palsa being

nutrient poor ecosystems that are primarily ombrotrophic

while fens and permafrost fens are minerotrophic with greatly

varying nutrient status. The palsa ecosystem includes sites

described both as palsa and peat plateau, which differ in size

(peat plateaus > palsas) and vegetation [palsas are treeless

while peat plateaus are often treed (Beilman et al., 2001)], but

both are nutrient poor, permafrost peatland ecosystems. There

is no strict definition of what separates dry and wet tundra,

although better drainage of dry tundra causes it to be charac-

terized by dominance of woody shrubs and the presence of

E. vaginatum whereas wet tundra is commonly dominated by

Sphagnum spp and tall sedge species. Upland forest includes

treed sites with both open and closed canopies and

ZORG < 40 cm. Sites were classified as littoral when described

to be located along the edge of lakes or streams. Twelve sites

were not classified into any ecosystem, including sites with

descriptions such as burned forest, clear felled forest, coastal

marsh, taiga swamp, alpine fen, alas grassland, and pingo. In

addition, we separated out 24 sites (11 bog, 10 fen, and two lit-

toral sites along with one unclassified site) that were described

to have recently (within the last � 100 years) undergone

complete near-surface permafrost thaw.

Almost no studies provide information on all variables

included in the database. Of the 303 sites, 290 have data on

permafrost conditions, 283 on sedge cover, 274 on Sphagnum

moss, and tree cover, 262 on woody shrub cover, 256 on ZWT,

182 on TS, 159 on ZORG, 105 on ZAL, 96 on ER, 82 on pH, and

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12071
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27 on GPP. Due to the sparse and uneven data matrix, any

combination of variables for the purpose of analysis led to

further reduced datasets, for example 155 sites have data on

ZWT, TS, permafrost conditions, and sedge cover.

Database analysis

All statistical analyses were carried out in MatLab R2009b. We

used Kruskal-Wallis (K-W) analysis to test for differences in

median FCH4 among categories; a nonparametric analysis was

appropriate because FCH4 was skewed toward low fluxes. In

regression analyses, FCH4 was transformed by first adding a

constant of 5 mg CH4 m�2 d�1 (to enable us to include sites

with CH4 uptake and near zero emissions in our analyses) before

log-transforming the data [log(FCH4+5)]. Log-transformation was

necessary for the dataset to approximate a normal distribution

that is an assumption of several statistical analyses. We used

analysis of covariance (ANCOVA) to test for differences in the

slopes of the relationships between log(FCH4+5) and TS or ZWT

for different categorical variables. Post hoc comparisons of

median FCH4 (K-W) and slopes (ANCOVA) were performed

using Tukey HSD test. We further used regression analysis

(stepwise regression, including all permutations of variables)

to build empirical models with log(FCH4+5) as the dependent

variable. Model selection was performed using the Akaike

information criteria with a bias adjustment for small sample

sizes (AICc) to rank models.

The best model from the regression analysis was used to

assess sensitivities of CH4 fluxes at the ecosystem level to vari-

ability in TS and ZWT, assuming constant vegetation composi-

tion and permafrost conditions in the analysis. Ecosystem CH4

flux was modeled by calculating three fluxes under each set of

environmental conditions; one each for the sedge cover cate-

gories (using the median ZWT and TS of sites in each sedge

cover categories within each ecosystem type), followed by a

weighting of these three fluxes in accordance with the propor-

tion of sites within each sedge cover category within each eco-

system. A bootstrap technique (3000 iterations) based on the

95% confidence intervals of each constant in the empirical

model was used to yield uncertainties of ecosystem fluxes.

Results

Of the continuous variables, only ZWT, GPP, and TS

were significantly related to log(FCH4+5) (ZWT: P <
0.0001, r2 = 0.42; GPP: P = 0.001, r2 = 0.37 and TS:

P = 0.001, r2 = 0.05; Fig. 2). Because of the low number

of sites that reported comparable GPP estimates, we

did not include GPP in any further analyses. In general,
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Fig. 2 Relationships between site average growing season CH4 flux (expressed as log(FCH4+5), where FCH4 is in mg CH4 m
�2 d�1), envi-

ronmental variables and CO2 fluxes; long-term mean annual air temperature (TMAT), long-term mean summer temperature (TMST),
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GPP was higher in sites with a dominant sedge cover

than sites where sedges were absent (K-W: P < 0.05).

There were no differences in median FCH4 among

permafrost zones or permafrost conditions, but there

were significant differences among categories based on

wetness and soil temperature and also among vegeta-

tion composition categories (Fig. 3). Sites that were wet

and saturated had higher median FCH4 than dry sites

and there were consistent trends of increasing FCH4 in

warmer temperature categories. Increased sedge cover

was related to higher median FCH4 (i.e. sedges absent <
present < dominant), while the opposite pattern was

found for woody shrubs and trees, and no influence

was found for Sphagnum moss coverage (data not

shown).

There were also significant differences in median

FCH4 among ecosystem types. The highest fluxes were

found from littoral, permafrost fen, wet tundra, and fen

ecosystems, which were significantly higher than those

from upland forest, palsa, and dry tundra ecosystems

(Fig. 3 and Table 1). Upland forest was the only ecosys-

tem that had a negative median FCH4, that is net CH4

uptake. Both median ZWT and the proportion of sites

dominated by sedges within an ecosystem increased

with ecosystem median FCH4 (Table 1 and Fig. 4). Dry

ecosystems, for example upland forest and dry tundra,

had lower data coverage for ZWT than other ecosys-

tems, possibly due to difficulties in locating the water

table – which could mean that median ZWT for these

ecosystems are overestimates of representative condi-

tions.

Site CH4 flux expressed as a percentage of site ER

(mg CH4-C m�2 d�1 mg�1 CO2-C m�2 d�1 9 100) was

related to site wetness and sedge cover, with highest

medians at 4–5% for wet and saturated sites with a

dominant sedge cover (Fig. 5). Median percentages also

increased among ecosystems with increasing median

ecosystem ZWT, excluding the bog and fen ecosystems
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Absent
Present
Dominant
Absent
Present
Dominant
Absent
Present
Dominant
Upland
Dry Tundra
Palsa
Bog
Fen
Wet tundra
Permafrost fen
Littoral
Dry/Cold
Dry/Inter.
Dry/Warm
Wet/Cold
Wet/Inter.
Wet/Warm
Sat./Cold
Sat./Inter.
Sat./Warm
Present
Absent
Continuous
Discontinuous.
Sporadic/Iso.

Methane flux (mg CH4 m–2 day–1)

Shrubs

Permafrost
conditions

Permafrost
zone

ZWT/TS

categories

Ecosystem

n K−W

92
71

140
110
180

13
24
17
23
26
16
15
15
14
17
32
48
65
35
36
41
17
33
22

219
69
77

116
130

89
64

a
a
a
a
a
a
a

ab
a
a

bc
bc
bc

c
a
a
a
a

ab
bc
cd

d
a
b
b
a
b
c
a
b
c

Sedges

Trees

Fig. 3 Site CH4 fluxes classified by several categorical variables. Circles indicate median flux, boxes show the range between the 25th

and 75th percentiles and plus signs represent outliers. Five sites with fluxes >350 mg CH4 m
�2 d�1 are not shown. The number of sites

within each category is indicated on the right (n), and differences among categories within each variable are denoted on the far right

(Kruskal-Wallis, K-W, test followed by Tukey HSD, P < 0.05). Three permafrost zones are included, continuous, discontinuous, and a

combined sporadic/isolated zone. Permafrost conditions refer to the presence or absence of permafrost in the upper 2 m of soils. Clas-

sification of water table/soil temperature (ZWT/TS) categories is based on separations for ZWT at �15 and �2.5 cm (yielding Dry, Wet,

and Saturated categories) and for TS at 5 and 10 °C (yielding Cold, Intermediate, and Warm categories). See text for definitions used to

classify ecosystem types and vegetation composition.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12071

6 D. OLEFELDT et al.



for which data coverage was low (<12% of sites;

Table 1).

Analysis of covariance showed that relationships

between log(FCH4+5) and TS varied with site wetness

(Fig. 6a) and sedge cover (Fig. 6c), but were unaffected

by permafrost conditions (Fig 6e). Interestingly, sites

with a dominant sedge cover were found to have high

emissions even at low TS, yielding a weaker tempera-

ture dependency of log(FCH4+5) for sites dominated by

sedges than for sites where sedges were merely present.

Sedge cover was also found to affect the relationship

between log(FCH4+5) and ZWT (Fig. 6d), showing that

high CH4 emissions from sites dominated by sedges

were not only due to an association with high water

table position but that they also had higher emissions

than other sites at comparable water table positions.

Emissions were also higher at comparable water table

positions from sites with permafrost than from sites

where permafrost was absent (Fig. 6f) and higher from

sites with warm and intermediate soil temperature cat-

egories than from cold sites (Fig. 6b), although the

slopes of these relationships remained similar.

In our multivariate regression analysis, we included

only sites with complete data sets on ZWT, TS, sedge

cover and permafrost conditions – 155 sites collected

from 31 studies. In the analysis we also included the

variables ZWT
2, ZWT

3 and interaction variables between

ZWT and TS and between sedge cover and TS. All possi-

ble models were explored and ranked based on AICc

(Table 2). Dominant sedge cover and ZWT were the two

variables with the highest explanatory power in single

variable models and, when combined in a two variable

model, their explanatory power increased significantly

(adj. r2 = 0.47). Permafrost conditions and TS could not

Table 1 Characteristics of sites based on ecosystem categorization. Information includes the number of sites for each ecosystem

type and the number of contributing studies. Shown are also median (Md.) site average CH4 flux (FCH4), average water table posi-

tion (ZWT), long term mean annual temperature (TMAT), long term mean summer temperature (TMST), average soil temperature as

measured between 5 and 25 cm below the surface (TS), depth of the organic layer (ZORG), soil pH, ecosystem respiration (ER) and

CH4 flux expressed as a per-cent of ER (FCH4%). Characterization of vegetation composition in each ecosystem is represented by tree

cover (percent of sites within each ecosystem where trees are absent) and sedge cover (percent of sites classified with a dominant,

present or absent sedge cover)

Upland

forest

Dry

tundra Palsa Bog Fen

Wet

tundra

Permafrost

fen Littoral Thawed*

Sites 17 41 36 35 65 48 32 17 24

Studies 12 18 16 11 21 20 14 13 13

FCH4

(mg CH4 m
�2 d�1)

Md. �0.7 2.4 7.0 23.0 37.1 64.5 75.8 89.0 56.9

25th �1.1 0.0 0.4 5.6 11.5 31.9 41.7 58.3 21.5

75th �0.4 6.0 27.3 83.0 95.0 100.6 147.3 112.4 99.8

ZWT (cm) Md. �25.8 �15 �20 �13 �6 0 0 2.5 �5.5

Data† 35% 80% 92% 86% 89% 100% 97% 76% 71%

TMAT (°C) Md. �6 �11.4 �3.8 �0.8 �3.5 �11.4 �8.5 �8.1 �3.3

TMST (°C) Md. 14.4 8.1 10.2 14.5 13.6 7.7 9.3 10.2 13.9

TS (°C) Md. 8.8 3.9 6.1 12.5 11.8 3.7 6.8 8.8 11.7

Data† 59% 73% 72% 63% 68% 52% 59% 65% 54%

ZORG (cm) Md. 12 18 100 200 100 20 41 40 100

Data† 59% 37% 44% 69% 57% 52% 56% 29% 38%

Sedges Dom. 7% 13% 25% 31% 65% 69% 66% 71% 65%

Pres. 0% 46% 47% 50% 27% 21% 24% 29% 26%

Abs. 93% 41% 28% 19% 8% 10% 10% 0% 9%

Data† 83% 95% 100% 91% 92% 100% 91% 100% 96%

Trees Abs. 0% 100% 74% 72% 74% 100% 89% 100% 92%

Data† 100% 93% 97% 94% 83% 90% 84% 94% 100%

pH Md. 5.4 5.4 4.1 4.2 5.8 6.2 5.3 5.7 4.3

Data† 24% 10% 28% 37% 32% 27% 28% 24% 42%

ER (g C m�2 d�1)

FCH4% (%)

Md. 3.11 1.70 1.37 0.90 1.99 1.42 1.98 1.91 1.3

Md. �0.1% 0.1% 1.6% 1.8% 8.7% 2.7% 6.3% 5.1% 4.9%

Data† 41% 49% 61% 9% 12% 31% 34% 41% 29%

*The Thawed category is not an exclusive group, but contains sites from the other ecosystem types that are described to have recently

(within the last 100 years) undergone permafrost thaw (i.e. sites located in thermokarst landforms).

†Data coverage of presented variables is indicated as a percent of reporting sites within each ecosystem. Data coverage for FCH4,

TMAT and TMST is 100%.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12071
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both be included in any model that had lower AICc

than when they were included individually, suggesting

that the presence or absence of permafrost is only an

indicator of soil temperature and does not in itself

influence CH4 emissions. The results from the model

analysis also indicated that the relationship between

ZWT and log(FCH4+5) was not properly described by a

linear relationship. Including ZWT
2 and ZWT

3 improved

the models and caused modeled log(FCH4+5) to increase

more rapidly between ZWT of �15 and +5 cm than

either above or below this range in several models –
indicating that CH4 emissions peak when the water

table is near the soil surface. The best model (adj.

r2 = 0.59) included the variables ZWT
2, ZWT

3, TS, sedges

present, sedges dominant, and interaction variables

between ZWT and TS and between sedges dominant

and TS (Fig. 7).

No improvement of the best model was found by fur-

ther adding year-of-study as a variable – that is no

direct detectable influence on CH4 emissions from

increased atmospheric CO2 concentration was found

(see Supporting Information for expanded discussion).

Regression analysis was also not able to detect any

significant influence from ZORG on log(FCH4+5), which

was tested by adding combinations of ZORG, log(ZORG)

and interaction variables between ZORG/log(ZORG) and

ZWT to the best model (n = 83) and by building a new

model which only included variables based on ZWT

and ZORG (n = 138).

The best empirical model was used to assess ecosys-

tem FCH4 sensitivities to variable water table levels and

soil temperatures. Using measured median water table

levels, soil temperatures, and vegetation composition,

the model yielded estimated ecosystem FCH4 values

that were comparable to the median measured ecosystem

FCH4 (R
2 = 0.86, n = 8, P < 0.01, and the first and third

quartile estimates from the boot strap analysis included

the median measured FCH4). Sensitivities of ecosystem

FCH4 were assessed by varying median TS and/or ZWT

in the model. In general, it was found that ecosystems

where the median water table was at or above the soil

surface, for example littoral and permafrost fen, were

more sensitive to changes in TS while ecosystems with

a median water table below the soil surface, for exam-

ple bog and fen, were more sensitive to changes in ZWT

(Fig. 8). A combination of increased TS and ZWT led to

ecosystem FCH4 that was enhanced by between 60%

and 120%, which is an increase that was greater for all

ecosystems than the combined individual effects of

raised TS and ZWT. A combination of drier and warmer

conditions yielded both decreased (palsa, bog and fen)

and increased (wet tundra, permafrost fen, and littoral)

central estimates of ecosystem FCH4.

Of particular interest are the 24 sites that were

described as having undergone permafrost thaw dur-

ing the last ~100 years (see Table 1). This grouping

shows that most research in thermokarst landforms has

been made in wet sites with moderate to high FCH4

(Fig. 4). Any potential effect on site FCH4 from micro-

bial access to previously frozen organic matter was

smaller than could be detected in our analysis. For

example, dominant sedge cover and ZWT between �11

and 0 cm characterized 10 of the 24 thawed sites. This

group had an average FCH4 of 136.4 � 22.6 (SE)

mg CH4 m�2 d�1 that was not significantly higher (two

tailed t-test, P = 0.23) than that of a group of sites with

similar sedge and ZWT conditions, but one that had not
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been recently thawed (99.2 � 21.3 (SE) mg CH4 m
�2 d�1,

n = 23). Given the small sample size and large variance

in this test, the smallest detectable difference (i.e.

P < 0.05) would have required the thawed group to

have emissions that on average were >65% greater than

the non-permafrost group, assuming that the variance

among sites remained constant.

Discussion

Controls on site CH4 emissions

In this study, we evaluated patterns of terrestrial aver-

age growing-season CH4 fluxes across permafrost

zones using results from 65 chamber-based studies

conducted over the last three decades. We focused on

average growing-season fluxes at the site level paired

with information on site physical and environmental

variables. Although it has long been known that water

table, soil temperature, plant productivity, and the

presence of sedges influence CH4 fluxes in high-latitude

ecosystems (Svensson, 1980; Sebacher et al., 1986; Moore

& Knowles, 1987; Whalen & Reeburgh, 1988; Whiting &

Chanton, 1993), our approach corroborates that these

variables are the main controls of CH4 fluxes among

sites within the permafrost zones and that their effects

are interactive. Our best empirical model, using data on

sedge cover along with average water table position and

soil temperature, accounted for~60% of the variation in

log-transformed CH4 fluxes. Remaining variation is

likely due to a combination of methodological and func-

tional factors. For example, methodological differences
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among studies include how vegetation composition is

reported, how ebullition events were handled, whether

boardwalks were used near the chambers, at what

depth soil temperature were measured, as well as vari-

able chamber sizes, closure times, study periods, and

sampling frequencies. Furthermore, our model did not

include GPP or variables related to atmospheric condi-

tions, which are known to affect CH4 emissions in the

permafrost region. Although GPP had a strong relation-

ship with CH4 fluxes in our database, too few studies

reported comparable estimates for inclusion in the

model. Atmospheric stability and turbulence is rarely

taken into account in chamber studies, but strongly

influence CH4 fluxes at daily time-scales in eddy-

covariance studies (Wille et al., 2008; Parmentier et al.,

2011), which is an issue that could affect the quality of

CH4 flux estimates in our database for sites where only

few flux measurements were made. In addition, although

the relationships between CH4 fluxes and environmen-

tal variables have been shown to strengthen when using

seasonal arithmetic averages rather than raw data

(Levy et al., 2012), the use of averages is problematic as

the functional relationships between CH4 flux and envi-

ronmental variables such as water table position and soil

temperature are known to be intrinsically nonlinear.

Our analysis stresses dominant sedge cover (in nearly

all sites represented by tall sedge species such as

E. aquatilis, E. angustifolium, E. scheuchzeri, and C. rostrata)

as a primary control of site CH4 fluxes in the permafrost

region. At comparable water table positions, sites domi-

nated by sedges had significantly higher CH4 emissions

than those measured at other sites. High CH4 emissions

from sedge dominated areas is attributed to both

reduced CH4 oxidation associated with the presence of

aerenchymatous roots and stems (Schimel, 1995; King

et al., 1998; von Fischer et al., 2010) and to increased

CH4 production linked to high plant productivity and

increased availability of organic acids because of root

exudation (Bellisario et al., 1999; Str€om et al., 2012).

Something that individual studies have been unable to

show is that the difference between CH4 emissions from

sedge dominated sites and other sites is more pro-

nounced in colder soils. It is thus possible to encounter

high CH4 emissions even in very cold regions as long as

sedges dominate the vegetation, and 9 of the 15 sites in

our database with CH4 emissions >225 mg CH4 m�2 d�1

Table 2 Model selection and results from regression analysis. 155 sites with data on CH4 flux (FCH4), water table position (ZWT),

soil temperature (TS) and binary (1/0) data for classification of sedge cover (Dominant/Present/Absent – SDom/Pres/Abs) and perma-

frost conditions (Present/Absent – PPres/Abs). The first four equations had the lowest AICc values of all combinations, and the

following groups of three or four equations were the equations with the lowest AICc for one, two and three variables respectively.

The last two equations were the best equations that only used ZWT and TS

Equation: log(FCH4+5) = adj. r2 AICc Di
† wi

‡

a+b*ZWT
2+c*ZWT

3+d*TS+e*ZWT*TS+f*SDom+g*SPres+h*SDom*TS
* 0.59 �305.3 0.0 0.66

a+b*ZWT
2+c*ZWT

3+d*TS+e*ZWT*TS+f*SDom+g*SDom*TS 0.58 �303.7 1.64 0.29

a+b*ZWT+c*TS+d*SDom+e*SPres*TS 0.55 �298.1 7.21 0.02

a+b*ZWT+c*SDom+d*SPres*TS 0.54 �296.7 8.59 0.01

a+b*SDom 0.33 �242.3 63.1 0.00

a+b*ZWT 0.33 �242.0 63.3 0.00

a+b*TS 0.12 �200.3 105.0 0.00

a+b*ZWT+c*SDom 0.47 �277.6 27.8 0.00

a+b*ZWT+c*Ts 0.42 �264.2 41.1 0.00

a+b*SDom+c*SPres 0.37 �250.1 59.8 0.00

a+b*ZWT+c*PAbs 0.36 �248.7 56.6 0.00

a+b*ZWT+c*TS+d*SDom 0.53 �293.6 11.7 0.00

a+b*ZWT+c*SDom+d*PAbs 0.50 �285.3 20.0 0.00

a+b*ZWT+c*SDom+d*SPres 0.49 �283.7 21.7 0.00

a+b*ZWT
2+c*ZWT

3+d*T+e*ZWT*TS 0.46 �266.0 39.3 0.00

a+b*ZWT+c*ZWT
2+d*ZWT

3+e*TS 0.43 �264.2 41.1 0.00

*Constants for the best model are: a: 0.859, b: �4.94 9 10�4, c: �8.96 9 10�6, d: 7.04 9 10�2, e: 1.77 9 10�3, f: 0.926, g: 0.164,

h: �5.17 9 10�2.

†Difference in AICc between the model and the best model.

‡Akaike weights, indicating probability for model to be the best model.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12071
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were located in the continuous permafrost zone. Specu-

lation about the cause of this pattern includes geo-

graphical distributions of sedges with species-specific

patterns of root exudation (Str€om et al., 2005, 2012) and

interactions between the oxidation potential provided

by aerenchymatous roots and mis-matches of tempera-

ture sensitivities for CH4 production and oxidation

(Wagner et al., 2003).

Using ecosystem CH4 emissions to scale emissions and
assess sensitivity

At the ecosystem level, median CH4 fluxes were

strongly related to both median water table position

and the proportion of sites within each ecosystem type

that was dominated by sedges. However, both physical

characteristics and CH4 fluxes varied greatly among

sites within each ecosystem. For many wetland ecosys-

tems, this variation can be linked to hummock and hol-

low patterning. Thus comparisons of median CH4

fluxes among ecosystems hinge on the assumption that

each ecosystem is represented without significant

biases related to site selection. We assume robustness

of our ecosystem characterization since at least 11 stud-

ies contributed sites to each ecosystem type, and each

ecosystem was represented by >17 sites and >110 indi-

vidual chambers.

Characteristic ecosystem CH4 emissions in combina-

tion with databases of wetland distributions have been

used to scale to regional or circumpolar emission esti-

mates (e.g. Matthews & Fung, 1987). Scaling emissions is

likely to be more sensitive to issues of accurately account-

ing for the spatial extent of different wetland types rather

than to uncertainties of characteristic ecosystem CH4

emissions (Frey & Smith, 2007; Krankina et al., 2008). For

example, littoral sites with the highest median CH4 emis-

sions in our database will strongly influence landscape

level estimates of CH4 emissions but, at the same time,

they are often represented by narrow and elongated

landscape features that have spatial extents that are diffi-

cult to assess over large geographical regions.

The implementation of the best empirical model at

the ecosystem level represents an assessment of CH4

emission sensitivity to variation in water table position

and soil temperature under constant physical condi-

tions, for example unaltered permafrost conditions and

vegetation composition. This analysis indicated that

wetter ecosystems are relatively more sensitive to soil

temperature shifts than drier ecosystems (a 5 °C
increase caused estimated ecosystem CH4 emissions to

increase by between 25% and 70%), while drier ecosys-

tems conversely are more sensitive to water table fluc-

tuations (a 5-cm rise was associated with a 0–45%
increase in ecosystem CH4 emissions). The analysis

further showed that water table and soil temperature

variations had synergistic effects. Although these

sensitivities are based on spatial patterns of the rela-

tionship between CH4 emissions and environmental

variables, they are of similar magnitude to observed

inter-annual variability of seasonal CH4 emissions at

individual sites in response to variation in water table

position and temperature (Whalen & Reeburgh, 1992;

Moosavi et al., 1996; Bubier et al., 2005; Turetsky et al.,
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2008) and to the sensitivities observed in studies where

environmental variables are manipulated (Turetsky

et al., 2008; Merbold et al., 2009). A strong sensitivity of

northern high-latitude CH4 emissions is consistent with

inverse modeling studies of inter-annual variability in

atmospheric CH4 concentrations and its relationship

with large scale climate patterns (Mikaloff-Fletcher

et al., 2004; Dlugokencky et al., 2009; Bloom et al., 2010).

Models generally predict a climate with both higher

temperatures and increased precipitation at northern

high latitudes during this century (Christensen et al.,

2007). However, depending on the balance between

greater rates of evapotranspiration and precipitation,

this could potentially lead to reduced inundated wet-

land area (Avis et al., 2011), which makes projections of

future northern wetland CH4 emissions uncertain

(Bohn et al., 2007; Koven et al., 2011).

Influence of permafrost conditions and permafrost thaw
on site CH4 emissions

Sites underlain by permafrost had lower CH4 emissions

than sites where surface permafrost was absent at com-

parable water table positions, a difference that was

accounted for by the variation among sites in soil tem-

perature. Recently thawed sites did not have higher

emissions than comparable sites that had not under-

gone recent thaw, although it is possible that the low

number of recently thawed sites along with the large

variation in emissions from these sites could have

allowed even a substantial effect (up to +65%) on CH4

emissions from increased degradation of recently

thawed organic matter to remain unnoticed (Wagner

et al., 2003; Mackelprang et al., 2011). However, consid-

ering that neither depth of the organic layer nor depth

of the active layer was found to be related to site CH4

emissions, our analysis suggests that terrestrial CH4

emissions are unlikely to be primarily limited by the

availability of organic substrate (c.f. Prater et al., 2007).

Thermokarst dynamics are associated with local

changes to hydrological setting, thermal regime, and

vegetation composition (Hinzman et al., 2005; Jorgen-

son & Osterkamp, 2005), all of which strongly influ-

enced CH4 emissions as analysis in this study

illustrates. Most research of CH4 emissions in thermok-

arst landforms has been undertaken in lowland settings

where permafrost often has a substantial ice content,

and where thermokarst development leads to subsi-

dence, raised water table and high CH4 emissions, for

example through the conversion of upland or palsa

sites into bog or fen sites (Bubier et al., 1995; Liblik

et al., 1997; Svensson et al., 1999; Wickland et al., 2006;

Myers-Smith et al., 2007; Prater et al., 2007; B€ackstrand

et al., 2008). Although not all lowland thermokarst

development leads to wet conditions and high CH4

fluxes (Turetsky et al., 2002; Desyatkin et al., 2009), their

development still represents very large relative

increases in CH4 emissions in comparison to pre-thaw

conditions. Although lakes were not included in this

study, lowland thermokarst development is also

responsible for the dynamics between thermokarst lake

formation and drainage, both of which can have sub-

stantial influences on landscape CH4 emissions (Walter

et al., 2006; Zona et al., 2009). The potential for

increased CH4 emissions through lowland thermokarst

development is great, but will be determined by the

spatial extents of future thermokarst development,

about which current knowledge is relatively low (Hum-

lum & Christiansen, 2008; Grosse et al., 2011; Sannel &

Kuhry, 2011).

In contrast to thermokarst dynamics, few studies

have documented the influence on CH4 fluxes due to

predicted widespread deepening of the active layer and

loss of near surface permafrost without associated sub-

sidence (Hugelius et al., 2011; Lawrence et al., 2012).

Absence of permafrost in upland forests has been asso-

ciated with higher CH4 uptake than comparable sites

with permafrost (Flessa et al., 2008) but this pattern was

not confirmed in our analysis. For fen sites, however,

we found that permafrost presence was associated with

wetter conditions and higher median CH4 fluxes, sug-

gesting that permafrost loss and improved drainage in

some wetland ecosystem types can lead to lower CH4

emissions. Hence, the effects of permafrost thaw on

landscape surface moisture conditions need to be better

understood when assessing future CH4 emissions, par-

ticularly as it is likely that CH4 research in areas of per-

mafrost degradation has been biased toward locations

that have become drastically wetter rather than where

gradual drainage has occurred.

Model simulations project that permafrost degrada-

tion and associated microbial access to thawed organic

carbon stores will significantly increase high-latitude

CO2 (Schuur et al., 2009; Schaefer et al., 2011) and CH4

emissions (Koven et al., 2011; Schneider von Deimling

et al., 2012). Between 1% and 4% of mineralized carbon

from recently thawed soils is expected to be released as

CH4, which in itself can represent annual CH4 emissions

greater than estimates of total current high-latitude CH4

emissions (Schuur et al., 2011; Schneider von Deimling

et al., 2012). Our study did not characterize lake CH4

emissions, particularly the potential influence of ther-

mokarst lakes on future CH4 emissions (Walter et al.,

2006), and it did not assess CH4 emissions from land-

scape seeps associated with deep CH4 production

(Koven et al., 2011; Walter Anthony et al., 2012). However,

our synthesis of terrestrial CH4 fluxes did not find

support for increased CH4 emissions from areas with

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12071
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greater stores of organic carbon. Furthermore, only

wet and saturated sites were found to have CH4-C

emissions that were consistently >1% of ER fluxes. This

suggests that CH4 emissions in terrestrial environments

are largely driven by near-surface processes in combi-

nation with hydrological conditions. This needs to be

taken into account in model simulations to prevent

overestimates of future CH4 emissions. In conclusion,

our analysis suggests that future changes in terrestrial

CH4 emissions from the permafrost zones will be more

proximately related to changes in soil moisture, thermal

conditions, and vegetation shifts than to the direct

effects of permafrost thaw on the availability of newly

thawed organic matter.
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