Impacts of Wildfires on Plant Stoichiometry and Nitrogen Cycling in the Yukon–Kuskokwim Delta, AK.

Natalie Baillargeon¹, Rhys MacArthur¹, Sue Natali², John Schade², Seeta Sistla¹
¹Hampshire College, Amherst, Massachusetts, United States. ²Woods Hole Research Center, Falmouth, Massachusetts, United States

Introduction:
Anthropogenic climate change has increased average temperature and fire frequency in the arctic and boreal regions, including the Yukon–Kuskokwim Delta of western Alaska. We are investigating the impact of fire on plant stoichiometry and nitrogen (N) cycling over time using Rhododendron subarcticum (Labrador tea) and Vaccinium uliginosum (blueberry) as indicator species for evergreen shrubs and deciduous shrub, respectively. We also look at the recovery of moss and lichen species in this tundra ecosystem following fire.

Methods:
• In July 2018, we surveyed 4 paired 2015 burn and unburned sites and one site burned in 1972
• Each area consisted of:
 • Three 30 m transects that were 10m apart
 • Soil temperature (20 cm), active layer thaw depth, and percent cover using a point intercept method at 1 m intervals
• At the end of each transect, harvested aboveground biomass in 900 cm² area
• Biomass was divided into species or functional type and shrubs were sub-sorted into parts (leaves, stems, flower)
• Plant %C and %N measured on a Leco elemental analyzer

Conceptual Model:
Climate Change → + Temperature → + Drier Conditions → + Wildfires → N Vegetation

Hypothesis:
We hypothesized that burning would change the stoichiometry of shrub by reducing their carbon (C) to N ratio due to an increase in plant-available N. We also hypothesized that fire would drive a shift from a lichen-dominant to moss-dominant ecosystems.

Results:

Discussion:
Aboveground Biomass:
(Figure 6)
• Immediately after fire, all aboveground biomass was reduced, expect for Sphagnum
• 46 years after fire, shrub and non-Sphagnum moss biomass was greater than unburned areas
• Lichen and Sphagnum did not recover even 46 years after fire

Shrub Leaf and Stem C:N
(Figure 7 and 8)
• Fire reduced shrub leaf and stem C:N in the short term, likely due to increased soil N availability
• 46 years after fire, C:N was still lower for stems than unburned areas, but close to recovering completely
• Leaf C:N for the 1972 burn was higher than unburned levels due to an increase in C

Shrub Leaf and Stem total C and N
(Figure 9 and 10)
• More N and C was stored in shrub biomass 46 years after the fire
• Increased N availability may promote greater shrub biomass nearly five decades post-fire.

Conclusion:
In the short term, fire alters plant stoichiometry of R. subarcticum, V. uliginosum, and other shrubs by decreasing C:N (driven by an increase in % N). However, over decadal time scales, the C:N increases, in leaves, relative to unburned areas, while remaining lower relative to unburned areas in stems. Yet, the total N in our indicator species continued to be greater than neighboring unburned areas due to increased biomass. Thus, increased N may facilitate a positive feedback of N cycling in the burned ecosystem. We also found a recovery change in the lichen to moss ratio over time after fire. It is possible that change was facilitated by a stoichiometric shift. Even 46 years after fire, lichen does not recover, but there is some moss recovery with a replacement of Sphagnum with non-Sphagnum moss. It also indicates that the impacts from fires in this system may propagate for decades, and that wildfire-driven biogeochemical changes will become more prevalent in the Yukon–Kuskokwim Delta.

Acknowledgments:
Funds for this project were received from NSF for the Polaris Project (NSF-1624927) and Hampshire College. Thank you to Greg Fiske for providing maps and Chris Linder for providing photos. Finally, thank you to the other Polaris Project participants for their support.