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The carbon budget of the northern cryosphere region
A David McGuire1, Robie W Macdonald2, Edward AG Schuur3,
Jennifer W Harden4, Peter Kuhry5, Daniel J Hayes6, Torben R Christensen7

and Martin Heimann8
The northern cryosphere is undergoing substantial warming of

permafrost and loss of sea ice. Release of stored carbon to the

atmosphere in response to this change has the potential to affect

the global climate system. Studies indicate that the northern

cryosphere has been not only a substantial sink for atmospheric

CO2 in recent decades, but also an important source of CH4

because of emissions from wetlands and lakes. Analyses

suggest that the sensitivity of the carbon cycle of the region over

the 21st Century is potentially large,but highly uncertain because

numerous pathways of response will be affected by warming.

Further research should focus on sensitive elements of the

carbon cycle such as the consequences of increased fire

disturbance, permafrost degradation, and sea ice loss in the

northern cryosphere region.
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Introduction
The northern cryosphere region extends from the North

Pole to the southern limits of permafrost on land and sea ice

in the Arctic Ocean and adjacent seas (Figure 1) [1��,2].

The land component, which extends southward to approxi-

mately 458N in Asia and 508N in North America, largely
www.sciencedirect.com
drains into the Arctic Ocean. Vast amounts of organic

carbon are stored within permafrost [3�,4�] and in methane

hydrates beneath both subterranean and submerged per-

mafrost [5�]. Air temperatures have already increased

dramatically within the Arctic [6] accompanied by con-

sequential warming of permafrost [7], and loss of sea ice

mass [8] and cover [9]. Continued warming has the poten-

tial to affect the storage of the carbon contained in the

region in ways that could cause substantial changes in the

global climate system [1��]. Here we provide a contem-

porary carbon budget for the northern cryosphere region

and discuss its vulnerability to projected climate change.

We end this review with recommendations for future

research on the fate of carbon in the northern cryosphere.

Contemporary carbon stocks and fluxes of the
northern cryosphere
Between 1400 and 1850 Pg C of organic carbon are stored

in surface (0–3 m) and deeper soils (up to �25–50 m in

some areas) of the northern cryosphere (Table 1) [1��]. The

recent estimate of 1672 Pg C in permafrost soils of the

northern circumpolar region [3�] falls within this range.

Much of this soil organic carbon has accumulated because

of wet and cold conditions that limit decomposition of soil

organic matter, soil organic horizons that are too deep or

wet for combustion, and the incorporation of organic car-

bon in permafrost. Between 60 and 70 Pg C is stored in

vegetation of the region [1��], which is between 10% and

20% of the world’s vegetation carbon; most of this storage is

in tree biomass of the boreal forests in the region.

The Arctic Ocean and its shelf seas store inorganic carbon

(DIC) stocks of 310 Pg C; approximately 1% of this

storage has derived from fossil fuel emissions via the

atmosphere [10]. It is speculated that there are substantial

stocks of CH4 stored as gas hydrate beneath the ocean

floor and beneath both subterranean and submerged

permafrost of the Arctic [5�]. Rough estimates reveal a

large uncertainty in the storage, between 35 and

365 Pg CH4 [1��], and the location of this stored carbon

in warming shallow Arctic environments places it at risk of

release [5�]. A slow steady release of CH4 from the ocean

hydrate reservoir is considered to be a slow but irrevers-

ible tipping point in the global carbon cycle [11�].

The northern cryosphere plays an important role in

the global dynamics of both CO2 and CH4. Top-down
Current Opinion in Environmental Sustainability 2010, 2:231–236
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Figure 1

The northern cryosphere region extends from the North Pole to the southern limits of discontinuous permafrost on land and of sea ice in the Arctic

Ocean and adjacent seas. The distribution of land underlain by permafrost in the Northern Hemisphere over unglaciated regions is shown as the white

mottled area. The green area depicts the circumpolar land area north of 458N, and the land area of watersheds draining into the Arctic Ocean and its

margin seas (the blue area) is identified by the thick black lines.Figure reprinted from Ref. [1��] with permission.
atmospheric analyses indicate that the region has been a

sink for atmospheric CO2 of up to 0.8 Pg C yr�1 in recent

decades (Figure 2) [12–14], which is up to 25% of the net

land/ocean sink of 3.2 Pg C yr�1 estimated for the 1990s by
Table 1

Estimates of carbon stocks in the northern cryosphere regiona

Reservoir Size of carbon stock

(Pg = 1015 g)

Northern cryosphere land

Soil 1400–1850 Pg C

Vegetation 60–70 Pg C

Northern cryosphere ocean

Dissolved inorganic carbon 310 Pg C

Dissolved organic carbon 9 Pg C

Surface sediments 9 Pg C

Methane hydrates

Beneath northern cryosphere land 2–65 Pg CH4 (2–49 Pg C)

Beneath northern cryosphere ocean 30–170 Pg CH4

(23–128 Pg C)

Total 1813–2425 Pg C

a Based on estimates in Ref. [1��].
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the Intergovernmental Panel on Climate Change 4th

Assessment Report (AR4) [15��]. Inventory-based analyses

indicate that the land sink of the northern cryosphere

region has been between 0.3 and 0.6 Pg C yr�1 [16–20],

which is 30–60% of the 1.0 Pg C yr�1 global net land sink

estimate for the 1990s [15��]. Much of this storage is due to

growth of trees in Russian forests [18]. The Arctic Ocean is

estimated to have a net uptake of CO2 from the atmosphere

between 24 and 100 Tg C yr�1 [1��], which is 1–5% of the

2.2 Pg C yr�1 net ocean CO2 sink estimated globally by

AR4 for the same time period [15��]. Similar recent esti-

mates of 65–175 Tg C yr�1 net CO2 uptake [21�] imply an

even higher potential uptake by the Arctic Ocean.

Atmospheric analyses indicate that the northern cryo-

sphere is a source of CH4 to the atmosphere of between

15 and 50 Tg CH4 yr�1 (Figure 2) [22–26], which is

between 3% and 9% of the net land/ocean source of

552 Tg CH4 yr�1 estimated by AR4 [15��]. In comparison

with the top-down analyses, bottom-up analyses have

wider uncertainty bounds (32 and 112 Tg CH4 yr�1,

respectively) for the net source of CH4 from the surface
www.sciencedirect.com
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Figure 2

The contemporary state of the carbon budget of the northern cyrosphere region presented by McGuire et al. [1��]. Pg = 1015 g, Tg = 1012 g, and

Gg = 109 g.Figure reprinted with permission.
to the atmosphere in the northern cryosphere [1��]. The

uncertainty bounds from the bottom-up analyses would

be closer to that of the top-down analyses if the estimated

15–35 Tg CH4 yr�1 from thermokarst lake systems of the

region [27�] were neglected. An important research ques-

tion is whether consideration of the estimated fluxes from

thermokarst lake systems and from the Arctic continental

shelf [28�] would influence the top-down estimates of

CH4 exchange for the northern cryosphere.

The drainage basin of the Arctic Ocean accounts for 11% of

global river discharge of water from land to ocean [29].

Approximately 80 Tg C yr�1 is transferred from land to

ocean via rivers in the northern cryosphere (Figure 2) [1��],
which is approximately 10% of the estimated 0.8 Pg C yr�1

transferred globally by rivers [30]. Coastal and wind erosion

contribute another 8 Tg C yr�1 to the Arctic Ocean, and

ultimately approximately 11 Tg C yr�1, including marine

carbon, is buried in marine sediments (Figure 2) [31],

which is about 5% of the estimated 0.2 Pg C yr�1 trans-

ferred to ocean floor sediments globally [30]. This is

approximately proportional to the areal representation of
www.sciencedirect.com
the Arctic Ocean and its associated shelf seas in the global

ocean system.

How vulnerable is carbon in the northern
cryosphere to climate change?
Carbon storage in the land areas of the northern cryosphere

is primarily vulnerable to increases in disturbance, perma-

frost thaw, and change in hydrology. The frequency of

boreal forest fires [32,33] and insect outbreaks [34�] is

increasing, which appears to contribute CO2 to the atmos-

phere [34�,35]. In some regions of the North America

boreal forest, fire frequency could increase 4–6 times

depending on emission scenarios [36]. Fire increases are

also predicted in Asia [37]. Similarly, near-surface perma-

frost area is projected to decrease by between 6 and

11 � 106 km2 by 2100 [38,39]. Hydrology of the northern

cryosphere is changing with increases in river discharge

[40] and decreases in lake area [41�,42�]. Fires in the

northern cryosphere, which initially release carbon largely

through the combustion of organic soil carbon stocks [43�],
can also trigger subsequent thaw of permafrost in a warm-

ing climate through removal of the thermally protective
Current Opinion in Environmental Sustainability 2010, 2:231–236
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organic layer [44]. Thawing of permafrost occurs both

gradually in ice-poor permafrost and abruptly in ice-rich

permafrost, exposing organic C to microbial decompo-

sition [45�]. Abrupt permafrost thaw results in subsidence

and may lead to thermal erosion. This thermokarst disturb-

ance interacts strongly with local hydrology and can lead to

either well-drained or saturated conditions that, in turn,

have a strong impact on the rate and form of C that will be

lost from thawed permafrost [45�]. The response of carbon

storage to fire or permafrost thaw depends on assumptions

about CO2 fertilization [46,47]. Under an assumption of no

CO2 fertilization in the boreal forest region, it is estimated

that the northern cryosphere region could lose up to

50 Pg C (1000 g C m�2) in the 21st Century in response

to a doubling of area burned and the thawing of permafrost

[46]. However, the response of carbon storage to perma-

frost thaw is highly uncertain, as current regional and

global models typically only consider how the fate of

carbon is affected by a deepening active layer and do

not consider the complex interactions that cause thermo-

karst and more rapid permafrost thaw. For example, field

measurements of thermokarst in tundra ecosystems

showed that initial permafrost thaw resulted in a carbon

sink as plant uptake was stimulated more than the release

of carbon from permafrost [48�]. However, as permafrost

thawed and thermokarst progressed over decades,

increased decomposition of old permafrost carbon by

microbes was greater than the increased plant uptake.

Moreover, carbon density in permafrost far exceeds poten-

tial carbon density in biomass even under the most favor-

able assumptions about growth responses of biomass.

Therefore, long-term carbon releases from permafrost will

probably lead to net carbon loss from ecosystems affected

by thermokarst.

In general, reduced sea ice will result in greater exchange

of carbon from the Arctic Ocean to the atmosphere [1��].
More light will penetrate the surface water, wind mixing

and upwelling will increase, all of which will stimulate

plankton photosynthesis and enhance the uptake of CO2.

However, increased inflow from land together with a

period of enhanced melting of sea ice will mean more

freshwater in upper ocean layers, which can reduce bio-

logical activity in a more stable surface layer and result in

less CO2 being taken up by biota. Furthermore, as the

ocean warms, and as its pH decreases owing to CO2

accumulation, it can hold less DIC. Ocean acidification

associated with increases in atmospheric CO2 may further

modify the uptake of CO2 by the Arctic Ocean by

affecting inorganic and biotic C dynamics in the ocean

[49]. Warmer water may also lead to increased production

of CO2 and CH4 through decomposition and other bio-

logical activity. While the balance of these competing

exchanges and their overall effect on the uptake of CO2

into the marine system is not clearly understood, it is

argued that reduced sea ice will result in increased uptake

of CO2 from the atmosphere [50].
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The discharge of water from land to sea increased in the

northern cryosphere throughout the 20th Century [40],

and is expected to continue to increase during the 21st

Century. Increased water flow will probably mean

increased carbon transport, though the relative pro-

portions of different types of carbon are difficult to pre-

dict. One possibility is that carbon carried by rivers ends

up stored in coastal sediments. Another possibility is that

this carbon decomposes in the water column and is

released as CO2 and CH4.

Modeling analyses indicate that climate change has the

potential to substantially increase biogenic CH4 emis-

sions throughout the northern cryosphere during the

21st Century [46,51,52] because the sensitivity of

methanogenesis to temperature dominates over water

table sensitivity. However, the effects of thermokarst

on biogenic CH4 emissions have not been adequately

considered in these models, and the release of CH4

could be greater than projected. By contrast, the release

of methane from gas hydrates currently locked in

permafrost is likely to be a very slow process. Most

hydrates are stored at considerable depth and methane

release due to near-surface thawing is not expected in

the short term [11�,53]. Nonetheless, the fate of gas

hydrates remains largely uncertain in both the short and

long term [5�].

Conclusions
The northern cryosphere contains several times the

amount of carbon that is contained in the atmosphere.

Our current understanding of the carbon cycle in the

northern cryosphere is insufficient to rule out large

releases of CO2 and CH4 to the atmosphere in a warming

climate [1��,54�]. Such releases may be irreversible if

they overwhelm efforts to sequester CO2 in other sectors

of the global C cycle. Integrated studies of regional

carbon dynamics are needed to provide better infor-

mation on key elements of the carbon cycle in the north-

ern cryosphere. Such studies should link observations of

carbon dynamics to the processes that influence those

dynamics. The resulting information should be incorp-

orated into modeling efforts that connect carbon

dynamics and climate. The studies should focus on

sensitive parts of the system, for example areas experi-

encing major changes or thresholds such as increased fire

disturbance, permafrost degradation, and sea ice loss.

Furthermore, the rapidity and extent of change occurring

in the northern cryosphere demand an increased atten-

tion to collection of appropriate time-series data for the

carbon cycle of this region.
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Peterson BJ: Assessment of contemporary Arctic river runoff
based on observational discharge records. Journal of
Geophysical Research 2001, 10:63321-63334.

30. Sarmiento JL, Gruber N: Ocean Biogeochemical Dynamics.
Princeton University Press; 2006.

31. Stein R, Macdonald RW: Arctic Ocean organic carbon
accumulation and its global significance. In The Organic
Carbon Cycle in the Arctic Ocean. Edited by Stein R, Macdonald
RW. Springer; 2004:315-322.

32. Kasischke ES, Turetsky MR: Recent changes in the fire regime
across the North American boreal region. Geophysical
Research Letters 2006, 33:L09703 doi: 10.1029/2006GL025677.

33. Soja AJ, Tchebakova NM, French NHF, Flannigan MD,
Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS,
Stackhouse PW: Climate-induced boreal forest change:
predictions versus current observations. Global Planetary
Change 2007, 56:274-296.

34.
�

Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET,
Carroll A, Ebata T, Safranyik L: Mountain pine beetle and forest
carbon feedback to climate change. Nature 2008, 452:987-990.

This study is an important analysis of how insect disturbance may cause a
region to become a substantial source of CO2 to the atmosphere.

35. Hayes DJ, McGuire AD, Kicklighter DW, Burnside TJ, Melillo JM:
The effects of land cover and land use change on the
contemporary carbon balance of terrestrial ecosystems in the
Eurasian Arctic. In Arctic Land Cover and Land Use in a Changing
Climate. Edited by Gutman G, Groisman P, Reissell A. Springer;
2010, In Press.

36. Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J:
Assessing the response of area burned in western boreal
North America using a multivariate adaptive regression
splines (MARS) approach. Global Change Biology 2009,
15:578-600.

37. Flannigan MD, Bergeron Y, Engelmark O, Wotton BM: Future
wildfire in circumboreal forests in relation to global warming.
Journal of Vegetation Science 1998, 9:469-476.

38. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS,
Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM et al.:
Importance of recent shifts in soil thermal dynamics on
growing season length, productivity, and carbon
sequestration in terrestrial high-latitude ecosystems. Global
Change Biology 2006, 12:731-750.

39. Lawrence DM, Slater AG: Incorporating organic soil into a
global climate model. Climate Dynamics 2008, 30:145-160.

40. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ,
Shiklomanov IA, Shiklomanov AI, Lammers RB, Rahmstorf S:
Increasing river discharge to the Arctic Ocean. Science 2002,
298:2171-2173.

41.
�

Smith LC, Sheng Y, MacDonald GM, Hinzman LD: Disappearing
Arctic lakes. Science 2005, 308:1429.

This analysis documented lakes are shrinking in area in the discontinuous
permafrost zone of Eurasia.

42.
�

Riordan B, Verbyla D, McGuire AD: Shrinking ponds in subarctic
Alaska based on 1950–2002 remotely sensed images. Journal
of Geophysical Research 2006, 111:G04002 doi: 10.1029/
2005JG000150.
Current Opinion in Environmental Sustainability 2010, 2:231–236
This analysis documented that closed-basin ponds in the discontinuous
permafrost zone of Alaska have been shrinking in area.

43.
�

Boby LA, Schuur EAG, Mack MC, Verbyla D, Johnstone JF:
Quantifying fire severity, carbon, and nitrogen emissions in
Alaska’s boreal forest. Ecological Applications 2010, In Press.

This study conducted a comprehensive analysis of the loss of carbon
from black spruce ecosystems in Alaska, and identified that the compo-
site burn index can be used to quantify emissions.

44. Yi S, McGuire AD, Harden J, Kasischke E, Manies K, Hinzman L,
Liljedahl A, Randerson J, Liu H, Romanovsky V et al.: Interactions
between soil thermal and hydrological dynamics in the
response of Alaska ecosystems to fire disturbance. Journal of
Geophysical Research – Biogeosciences 2009, 114:G02015 doi:
10.1029/2008JG000841.

45.
�

Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB,
Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H et al.:
Vulnerability of permafrost carbon to climate change:
implications for the global carbon cycle. BioScience 2008,
58:701-714.

This is a comprehensive synthesis of the various mechanisms through
which permafrost responses to climate change may affect carbon sto-
rage in permafrost soils.

46. Zhuang Q, Melillo JM, Sarofin MC, Kicklighter DW, McGuire AD,
Felzer BS, Sokolov A, Prinn RG, Steudler PA, Hu S: CO2 and CH4

exchanges between land ecosystems and the atmosphere in
northern high latitudes over the 21st Century. Geophysical
Research Letters 2006, 33:L17403 doi: 10.1029/2006GL026972.

47. Balshi MS, McGuire AD, Duffy P, Kicklighter DW, Melillo J:
Vulnerability of carbon storage in North American boreal
forests to wildfires during the 21st Century. Global Change
Biology 2009, 15:1491-1510.

48.
�

Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO,
Osterkamp TE: The effect of permafrost thaw on old carbon
release and net carbon exchange from tundra. Nature 2009,
459:556-559.

This study identified that carbon storage in tundra ecosystems initially
increases after thermokarst formation, but that carbon is ultimately lost
from ecosystems over time from the thawing and decomposition of older
deep carbon.

49. Guinotte JM, Fabry VJ: Ocean acidification and its potential
effects on marine ecosystems. Annals of the New York Academy
of Sciences 2008, 1134:320-334.

50. Bates NR, Moran SB, Hansell DA, Mathis JT: An increasing CO2

sink in the Arctic Ocean due to sea–ice loss. Geophysical
Research Letters 2006, 23:L23609 doi: 10.1029/2006GL027028.

51. Zhuang Q, Melillo JM, McGuire AD, Kicklighter DW, Prinn RG,
Steudler PA, Felzer BS, Hu S: Net emissions of CH4 and CO2 in
Alaska: implications for the region’s greenhouse gas budget.
Ecological Applications 2007, 17:203-212.

52. Gedney NP, Cox M, Huntingford C: Climate feedback from
wetland methane emissions. Geophysical Research Letters
2004, 31:L20503 doi: 10.1029/2004GL020919.

53. Archer DE: Methane hydrate stability and anthropogenic
climate change. Biogeosciences 2007, 4:993-1057.

54.
�

Heimann M: How stable is the methane cycle? Science 2010,
327:1211-1212.

This comment very usefully evaluate reports of new methane sources in
the Arctic (for example from references [27�] and [28�] in the context of the
global methane cycle.
www.sciencedirect.com

http://dx.doi.org/10.1029/2006GL025677
http://dx.doi.org/10.1029/2005JG000150
http://dx.doi.org/10.1029/2005JG000150
http://dx.doi.org/10.1029/2008JG000841
http://dx.doi.org/10.1029/2008JG000841
http://dx.doi.org/10.1029/2006GL026972
http://dx.doi.org/10.1029/2006GL027028
http://dx.doi.org/10.1029/2004GL020919

	The carbon budget of the northern cryosphere region
	Introduction
	Contemporary carbon stocks and fluxes of the northern cryosphere
	How vulnerable is carbon in the northern cryosphere to climate change?
	Conclusions
	Acknowledgements
	References and recommended reading


